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Abstract

A simple novel approach to maintain the divergence-free condition with adaptive mesh refinement is presented. This

new approach uses reconstructions on the coarse faces together with the divergence-free condition to reconstruct the

field values on the internal fine faces. It does not construct a global interpolation polynomial over a whole coarse cell.

Therefore, it can be easily applied to any refinement ratio. It is implemented via a directionally splitting approach so

that it can be applied to any kind of grids and in any dimensions. Implementation is presented in the Cartesian, cy-

lindrical and spherical geometries. It is shown by several 2D magneto-hydrodynamic simulations that such a method

can keep the divergence-free error of magnetic fields at the round-off level.
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1. Introduction

Adaptive and hierarchical grids provide some of the most efficient spatial discretization for multi-scale

computational problems. It is of great interest to extend numerical schemes designed for a simple structured

mesh to adaptive and hierarchical grids. It is critical to conserve the properties of solutions when the mesh

resolution changes. Berger and Colella [1] proposed an adaptive mesh refinement (AMR) scheme for hy-

drodynamics to conserve scalar quantities (e.g., mass, energy) and numerical fluxes. Additional challenges,

however, are presented in physical systems satisfying the Stokes�s law type of equation with the divergence-

free evolution of vector fields, such as velocity fields in incompressible hydrodynamics and magnetic fields

in magnetohydrodynamics (MHD).
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The divergence-free evolution of magnetic fields is an important issue in developing an MHD code even

for a single non-adaptive grid. Brackbill and Barnes [3] have shown that the discretization error with respect

to the divergence of the magnetic field (r � B) usually grows exponentially during the computations, causing
an artificial force parallel to the magnetic field and destroying the correctness of the solutions. Several

approaches have been proposed to handle this problem. Different methods have different advantages and

limitations, especially for MHD codes with AMR and parallelization. For example, the projection method

proposed in [3] has been widely used by many authors (e.g., [12]). However, this method involves solving a

Poisson equation, which becomes difficult to implement on an AMR grid and has poor scalability for

parallel AMR computation.

Powell et al. [16] used a scheme of Powell [15] by adding a source term that is proportional tor � B to the

original set of MHD equations. They then argue that this non-physical source term will be advected away
and out of the computational box. This approach leads to a Riemann problem which has an eight-wave

structure, which is easy to carry over to AMR because all the variables reside at the cell-center. Recently,

Janhunen [11] proposed to only add the r � B source term to the induction equation, which restores the

momentum and energy conservation. Yet another approach has been proposed by Dedner et al. [9] to damp

the divergence errors while convecting it away by adding diffusion to the hyperbolic convection of ther � B.
However, T�oth [18] pointed out that the eight-wave formulation can lead to incorrect jump conditions

across strong shocks in the numerical solutions.

Another way to keep r � B exactly zero is to rewrite the MHD equations in terms of vector potential A
and define the magnetic field as B ¼ r� A. A disadvantage of this approach is that the order of spatial

derivatives increases by one, which reduces the order of accuracy by one (see [10] for more details).

The constrained transport (CT) method by Evans and Hawley [10] is another approach to keep r � B to

the accuracy of machine round-off error. This approach has been combined with various shock-capturing

schemes by many authors [2,7,8,13,17]. The original CT method used a staggered grid which places the

magnetic field variables at the face center and the rest at the cell-center. The divergence-free finite-difference

scheme can be easily constructed for the staggered grid (see [20]). T�oth [18] introduced a finite-volume

interpretation of the CT schemes that place all of the variables at the cell center. However, this idea is
difficult to generalize to an AMR grid.

Several recent studies by Balsara [4] and T�oth and Roe [19] have addressed the question of pre-

serving the divergence-free condition when the mesh is adaptive. The basic idea is to construct a di-

vergence-free interpolation formula for the coarse cell which is being refined. This approach works well

for AMR with a refinement ratio of two. However, the interpolation polynomial can become quite

complicated if the refinement ratio is larger than 2. As suggested in [4], the procedure should be applied

recursively for refinement ratio of 4 or 8, and new formulae have to be derived for other refinement

ratios due to the additional degrees of freedom needed to match the increased number of fine-grid
faces.

In this paper, we propose a new approach that maintains the divergence-free condition with AMR. This

new method is simple, can be implemented efficiently for arbitrary refinement ratios, and can be generalized

to different orthogonal and curvilinear grids. In Section 2, using the CT approach, we first demonstrate how

to implement our algorithm in 2D Cartesian, cylindrical and spherical grids. In Section 3, we present a

few examples using this algorithm, showing its ability of maintaining divergence-free condition to high

accuracy.
2. Algorithm

We first illustrate our algorithm using a simple 2D Cartesian grid (the generalization to 3D in Cartesian

is straightforward), then move on to implementations in cylindrical and spherical grids. To simplify our
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description, we assume that, for all geometries considered, each cell edge is split into equal-distance pieces

according to the refinement ratio.

2.1. Cartesian grid

We start by first describing the approach proposed by Balsara [4], since our method is similar to his. His

method was proposed originally for refinement ratios of 2 or powers of 2. Here we describe what happens

when that method is used for other refinement ratios. Subplots (a), (d0) and (e) in Fig. 1 show the steps.

Starting with a coarse cell shown in (a), we need to refine the cell by a factor of 3 along x and 2 along y, as

shown in subplot (e). First, from the known values uc0; uc1; vc0; vc1 of the coarse faces, one can obtain the

required new quantities v1; v2; v3; v4; v5; v6 and u1; u2; u7; u8 [see subplot (d0)] by using an interpolation
scheme, such as a piecewise linear reconstruction on the coarse face, which is enough to achieve the second

order accuracy. Note that if the coarse cell (a) shares edges with cells already refined meshes, then the field

component values on those refined meshes should be copied to the new finer mesh rather than using the

interpolation. In addition, to preserve the monotonicity of the coarse face values, an appropriate limiter

should be used. Second, using all the fine values shown in (d0) as surface boundary conditions, one can

construct interpolation polynomials for u and v so that the divergence-free condition is satisfied over the

whole cell (d0). Direct evaluation of the polynomials at specific positions gives the final state (e). For ease of

discussion, we will refer Balsara’s method as the ‘‘polynomial method’’ in the following.
(d')

Fig. 1. Directional-splitting approach for reconstruction of the divergence-free fields on a refined grid.
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As emphasized in the original paper by Balsara [4], this method is not designed for arbitrary refinement

ratios. This is because calculating the appropriate polynomial while satisfying all the boundary values

becomes prohibitively expensive for large degrees of freedom. Balsara�s approach does give an exact
method with closed-form expressions that are divergence-free and preserves the TVD property. The

method, furthermore, has the property of being dimensionally unsplit.

Motivated by this method, we now propose a different algorithm which is quite simple and efficient. Our

approach is illustrated in sequence by subplots (a)–(e) in Fig. 1:

(1) We use a directional splitting approach to treat multi-dimensional problems. We first consider the re-

finement along the x-direction as shown in subplot (b) of Fig. 1. Obtaining boundary values v1; . . . ; v6 is
the same as in Balsara�s approach described above.

(2) Given the quantities on the edges in (b), we can now partially construct the internal fine face values
based on the divergence-free condition. For example, in subplot (c), uc2 is uniquely defined by uc0,
v1, v2 as

uc2 ¼ uc0 þ ðv2 � v1Þ
dx
Dy

;

where dx and Dy are the spacings for the fine and coarse cells, respectively. The quantity uc3 can be

calculated in the similar manner. Then, it is straightforward to show that the divergence-free condition

is also preserved in the last cell by noting that

uc1 � uc3
dx

þ v6 � v5
Dy

¼ 0

if

uc1 � uc0
Dx

þ
1
3
ðv2 þ v4 þ v6Þ � 1

3
ðv1 þ v3 þ v5Þ

Dy
¼ 0:

(3) We now consider the refinement along the y-direction, which is taken as two in this example. As shown

in (d), quantities u1; u2; u7 and u8 can be obtained similar to step (1). In order to obtain quantities u3
and u4, we first obtain the slope along the y-direction at uc2. This limited slope can be obtained by in-

terpolation from the known values at the left and right faces of the coarse cell uc0 and uc1, which yields,

duc2
dy

¼ 1

3

duc1
dy

þ 2

3

duc0
dy

: ð1Þ

Quantities u3 and u4 can then be calculated from uc2 and duc2=dy. This step can be repeated to obtain u5
and u6.

(4) Quantities v7; v8 and v9 can be calculated using the divergence-free condition within its respective, re-

fined cell. This is shown in (e).

Even though we have only demonstrated our algorithm in 2D, its extension to 3D should not be

difficult. The interpolation on the coarse faces can be done using higher-order reconstruction as well,

though it should be conservative in a finite-volume sense.

We have made detailed comparisons between our method and that by Balsara for using a refinement

ratio of 2 in each direction. If the fine face values on the coarse faces are constructed in the same way and

the limited slope for the intermediate coarse face is obtained via Eq. (1), we obtain exactly the same values
for the internal fine faces for both 2D and 3D cases as those given by Balsara�s method. This also implies

that our reconstruction method has the same TVD preserving property as his method, which was discussed

in [5].
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The divergence-free prolongation for 3D is different from the reconstruction in [4]. The reason is that the

face values of the new fine grid may come from the old fine grid, and a linear profile is not enough. Balsara

[4] introduced complicated interpolation polynomials to match the known fine face values. Our results are
different from Balsara�s approach [4]. We may not have a closed-form expressions for the prolongation

operation on a whole coarse cell. However, whenever the interpolation is needed, monotonicity-preserving

linear or high-order interpolation in 1-D is used. It is efficient and TVD-preserving. We acknowledge that

our approach may not be as smooth as Balsara�s approach within a coarse cell.

For finite-difference and finite-volume methods on an AMR grid, a number of ghost cells are usually

required at the boundary. When the number of ghost cells is not divisible by the refinement ratio, special

care is needed in order to maintain the divergence-free condition in those cells. Instead, we use a virtual

extended grid, where several additional zones are added. For the virtual fine grid, the number of ghost cells
is divisible by the refinement ratio so that if a coarse face is next to a fine grid, it is covered wholly by the

fine faces. This virtual fine grid is used only to obtain the values of fine grid whenever the grid is re-adapted.

It is not used in integration.
2.2. Cylindrical and spherical grids

We now discuss how to implement our method in other orthogonal grids such as cylindrical and

spherical coordinates with AMR. Balsara [5] has studied this issue recently as well by extending his di-
vergence-free reconstruction of [4] to the cylindrical and spherical meshes. As described in [5], a variable

substitution and coordinate transformation approach is used to transform the divergence formula of the

cylindrical and spherical geometry to the standard divergence formula of the Cartesian grid. Then, the

reconstruction for the Cartesian grid is applied to the new variables on the new coordinates.

We use ðr; z;/Þ and ðr; h;/Þ to represent the cylindrical and spherical coordinates, respectively. The

divergence of a vector field v becomes

r � v ¼ 1

r
oðrvrÞ
or

�
þ rovz

oz
þ ov/

o/

�
; ð2Þ

for the cylindrical grid, and

r � v ¼ oðr2vrÞ
r2or

þ oðsin hvhÞ
roh

þ ov/
r sin ho/

; ð3Þ

for the spherical grid.

The main complication in implementing AMR in these geometries is to determine where the cell centers

or face centers are, because they are all weighted by additional factors such as 1=r and sin h. In our method

we assume that the edges of a grid in any direction are split into equal-distance pieces according to the

refinement ratio. This typically means that the coarse cell is not divided into equal area/volume pieces.

We first discuss the cylindrical grid. The finite-volume discretization of Eq. (2) is

ðr � vÞi;j;k ¼
ðrivri � ri�1vri�1

Þ
ri�1

2
dr

þ
ðvzj � vzj�1

Þ
dz

þ ðv/k
� v/k�1

Þ
ri�1

2
d/

;

where ri�1
2
¼ 1

2
ðri þ ri�1Þ.

As described in Section 2.1, the reconstruction for fine cells inside a whole coarse cell begins with re-

construction on each coarse face. It can be verified that the interpolation scheme for the Cartesian grid can

be applied to faces ðz;/Þ for the vr component and ðr; zÞ for the v/ component, but not to face ðr;/Þ for the
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vz component. To construct a conservative interpolation on the face of ðr;/Þ, we need to find the slopes at

various intermediate points. To do this, we use a linear profile defined by

vz ¼ vzc þ vz;/ð/� /0Þ þ vz;rðr � r0Þ; ð4Þ

where . . . ;/;r stands for o=o/ or o=or, vz;/ and vz;r are the limited slopes, and ðr0;/0Þ is the face center. The
quantity vzc is the area-averaged value of vz on the coarse face ½ri�1; ri� � ½/k�1; hk�, which is defined by

vzc ¼
1R R
rdrd/

Z ri

ri�1

Z /k

/k�1

vzrdrd/: ð5Þ

Inserting (4) into (5) and simplifying it, we obtain

vz;/ð/k�1
2
� /0Þ þ vz;r

2ðr3i � r3i�1Þ
3ðr2i � r2i�1Þ

�
� r0

�
¼ 0: ð6Þ

To satisfy Eq. (6), we let

/0 ¼ /k�1
2
¼ 1

2
ð/k þ /k�1Þ; ð7Þ
r0 ¼
2ðr3i � r3i�1Þ
3ðr2i � r2i�1Þ

: ð8Þ

We should mention that the expression for /0 and r0 are also valid for faces on a fine grid. Therefore, when

the mesh is refined with ratio m, face centers for the fine mesh can be calculated in the same fashion. Let
dr ¼ ðri � ri�1Þ=m and r ¼ ri, then the face centers for the fine grid will be

r0l ¼
2½ðr � ldrÞ3 � ðr � ðlþ 1ÞdrÞ3�
3½ðr � ldrÞ2 � ðr � ðlþ 1ÞdrÞ2�

; l ¼ 0; 1; . . . ;m� 1:

After all the face centers are calculated, the vector field components can be calculated by the linear profile

(4), for example, in r-direction,

vz0l;k ¼ vzc þ vz;rðr0l � r0Þ:

If we denote the area for the fine and coarse faces by

dA0l ¼ 1
2
ðr20ðlþlÞ � r20lÞd/; dAc ¼ 1

2
ðr2k � r2k�1Þd/;

then it can be verified that

Xm�1

l¼0

vz0l;k � dA0l ¼ vzc � dAc;

which means the flux is conserved after interpolation.

The face reconstruction for AMR on spherical grid is more complicated than the cylindrical case because

all faces need to be constructed specially. Take a reduced 2-D problem ðr; hÞ as an example. (The full 3-D

case can be derived similarly.) The divergence condition becomes

r � v ¼ 1

r2
oðr2vrÞ
or

þ 1

r sin h
oðsin hvhÞ

oh
: ð9Þ
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Integrating (9) on cell ½ri�1; ri� � ½hj�1; hj�, we obtain

r � v ¼ 1

DV
ððvri r2i � vri�1

r2i�1Þðcos hj�1 � cos hjÞ þ vhj ri�1
2
sin hj dr � vhj�1

ri�1
2
sin hj�1 drÞ; ð10Þ

where DV ¼ 1
3
ðr3i � r3i�1Þðcos hj�1 � cos hjÞ (where we drop d/ in our expressions) is the cell volume. Note

that dAh ¼ r2i ðcos hj�1 � cos hjÞ is the area of the (h;/) face at r ¼ ri and dAr ¼ ri�1
2
sin hj dr is the area of the

(r;/) face at h ¼ hj, the discretization is in good agreement with the physical definition of the divergence.

To do the reconstruction of a vector v on a coarse face, we define vr as the field component at cell�s (h;/Þ
face, vh at cell�s ðr;/Þ face. A piecewise linear profile via a slope limiter for vr and vh can be constructed in

the same way as for the Cartesian grid. Assume that the limited slope for vr in h direction is vr;h and the

linear profile is

vr ¼ vrc þ vr;hðh� h0Þ;

where h0 is the center for the coarse ðh;/Þ face. Unlike in Cartesian or cylindrical coordinates, however,

h0 6¼ 1
2
ðhj þ hj�1Þ

in spherical coordinates. Instead, we define vrc as

1

rðcos hj�1 � cos hjÞ

Z hj

hj�1

vr � r sin hdh ¼ vrc ;

which yields

h0 ¼
hj�1 cos hj�1 � hj cos hj þ sin hj � sin hj�1

cos hj�1 � cos hj
:

Similarly, for vh;r, we use the linear profile

vh ¼ vhc þ vh;rðr � r0Þ;

where r0 is the center of the coarse ðr;/Þ face. Then, we haveZ ri

ri�1

ðr � r0Þr sin hdr ¼ 0;

which yields

r0 ¼
2ðr3i � r3i�1Þ
3ðr2i � r2i�1Þ

;

the same as (8). After all the face centers are calculated, the vector field components can be calculated by the

linear profile, as we have done for the cylindrical grid.

At the origin r ¼ 0, we have only three faces, so we do not need the value of vr at the origin. At h ¼ 0 or

h ¼ p, we also have only three faces, and the reconstruction of vh needs special treatment. Since

dAr ¼ ri�1
2
sin hj ¼ 0 at h ¼ 0 or p, we re-define dAr ¼ Dr, which is reduced to the reconstruction on a

uniform 1-D grid. If the new fine grid shares face with the old fine grid, we do not need to construct the

linear profile for the coarse face and only copy the values of the old fine grid to the new grid.

After the face reconstruction is finished, the algorithm described in Section 2.1 can be used to reconstruct

the internal faces step by step.

In principle, our algorithm can also be applied to general structured curvilinear grids and unstructured

triangle meshes.
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3. Numerical experiment

We have implemented our algorithm in our MHD AMR solver [14]. In addition, we have implemented
Balsara�s electrical force correction method [4] to ensure that the restriction from fine to coarse grids

preserves the divergence-free condition of magnetic fields. In this section, we present several 2D numerical

examples in Cartesian, cylindrical and spherical geometries. In all the cases, magnetic field components are

defined at the edge/face centers while all other fluid quantities are defined at the cell centers. A second-order

Roe�s Riemann solver is used to advance the conservative variables.
3.1. Examples for Cartesian geometry

The first example is originally from Brio and Wu [6]. It is a classical 1-D shock-tube problem but we

solve it as a 2-D problem in the fx; yg plane with an angle a between the shock front and the y-axes. Since
this test with a ¼ 45� has been solved by Jiang and Wu [12] and many others, we choose

a ¼ tan�1 2 � 63:4�. The initial states are

ðq; vk; v?; p;B?;Bz; pÞ ¼
ð1; 0; 0; 0; 1; 0; 1Þ; left;
ð0:125; 0; 0; 0;�1; 0; 0:1Þ; right;

�

where k refers to the direction along the normal of the shock front, ? refers to the direction perpendicular

to the normal of the shock front but still in the computational plane and z refers to the direction out of the

plane. The value Bk is taken as 0.75.

Since the magnetic field is not uniform initially, it is important to make the initial condition satisfy

r � B ¼ 0. We first obtained the potential field A at each node from the given value of magnetic field Bk and
B?. Then, the Bx and By at the cell-interfaces are obtained via the central differencing of A.

As suggested by T�oth [18], the computational domain can be set up as a narrow strip ½0; 1� � ½0; 2=N �,
discretized with an N � 2 grid. Grid spacing is chosen as Dx ¼ Dy. The top and bottom boundaries are

specified by imposing the continuity of all variables along the traverse direction g ¼ y cos a� x sin a, while
the left and right boundaries are fixed according to the initial conditions. The computation is stopped at

time t ¼ 0:1 cos a ¼ 0:1=
ffiffiffi
5

p
. We first solved it with N ¼ 400 without refinement and then solved it with

N ¼ 200 and a two-level refinement with a refinement ratio of 2.

The numerical results are shown in Fig. 2. It is clearly seen that the AMR results coincide very well with
the uniform grid with the same resolution. The average L1 error between the 400 uniform grid and two-

level AMR grid is 2.23e) 5.

As pointed out by T�oth [18], the conservation of Bk is accurate only to truncation errors at best for

general a, although the divergence-free condition is accurate to machine round-off error. From Fig. 2, we

can see that the AMR process does not amplify the truncation error of Bk. A constant Bk can be main-

tained, however, if one uses a grid ratio Dx=Dy ¼ tan a.
The next example is taken from Dai and Woodward [7]. It models the disruption of a high density cloud

by a strong shock wave. The computational domain is fx; yg ¼ ½0; 1� � ½0; 1�. The initial condition contains
a discontinuity parallel to the y-axis at x ¼ 0:6 with the left and right states

ðq; vx;By ;Bz; pÞ ¼
ð3:86859; 0; 2:1826182;�2:1826182; 167:345Þ; left;
ð1;�11:2536; 0:56418958; 0:56418958; 1Þ; right

�

and vy ¼ vz ¼ Bx ¼ 0. The circular cloud is located initially at x ¼ 0:8; y ¼ 0:5 with a radius 0.15, density
q ¼ 10. There is a fixed boundary condition on the right at x ¼ 1 due to the supersonic flow, while the other

boundaries are approximately open with out-flow boundary conditions. An adiabatic equation of state with

an index c ¼ 5=3 is used.



Fig. 2. Results for the oblique shock-tube problem of Brio and Wu [6] with a ¼ tan�1 2. The output time is t ¼ 0:1=
ffiffiffi
5

p
.
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We tested this example with different refinement ratios. The base grid we used is 100� 100. The density
contour plots with refinement and r � B at t ¼ 0:06 are plotted in Figs. 3(a)–(d).

3.2. Examples for cylindrical geometry

We tested our algorithm for cylindrical geometry with two examples. The first one is a 2-D problem first

introduced in [2], where it was solved in a Cartesian grid. We reformulated it using cylindrical geometry.

The computational domain is a disk with ðr;/Þ ¼ ½0; 0:6� � ½0; 2p�. A dense disk of fluid with q ¼ 10 and

radius r0 ¼ 0:1 is rotating around the r ¼ 0 axis with v/ ¼ 20r. The ambient fluid is at rest with q ¼ 1. An
adiabatic equation of state with an index c ¼ 5=3 is used.

The initial magnetic field is uniform with Bx ¼ 5=
ffiffiffiffiffiffi
4p

p
and By ¼ 0, where x is along / ¼ 0. Converting

these into cylindrical coordinates, we have

Br ¼ Bx cos/;

B/ ¼ �Bx sin/;
ð11Þ

which is not divergence-free in our finite-volume discretization. Therefore, we adopted an approximate

initialization for Br, which is

Br ¼ Bx
sin/jþ1 � sin/j

d/
:



Fig. 3. (a) The density contour plot and refinement with refinement ratio of 2 at t ¼ 0:06 for cloud–shock interaction problem. Forty

four contours from 1 to 44 are used. (b) Ther � B at t ¼ 0:06 for (a). At each x, values ofr � B at different y are plotted. (c) The density
contour plot and refinement with refinement ratio of 3 at t ¼ 0:06 for cloud–shock interaction problem. Forty four contours from 1 to

44 are used. (d) The r � B at t ¼ 0:06 for (c). At each x, values of r � B at different y are plotted.
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This problem has two challenges for preserving the divergence-free condition on an AMR grid. The first is

the singular point at the origin. For the Br component, although it is not used in our finite-volume dis-

cretization for calculating r � B (it is canceled due to the zero area at r ¼ 0), it is needed in calculating the

cell-centered values of Br, which is then used in the Riemann solver. To calculate the dBr=dt at the origin,
we use extrapolation based on the cell-centered values of dBr=dt at (/; 12 dr) (which is calculated by our

Riemann solver) and the values at r1 ¼ dr.
For obtaining the B/ component at r ¼ 0, the Riemann solver produces different electric-field values for

different / at the origin. To maintain the divergence-free condition, only one electric-field value at the

origin should be used to advance the B/ for all of the /s. We set the electric-field at the origin to be the

average over the whole circle.

The next challenge is the periodic boundary condition in /. Every patch that shares an edge with / ¼ 0

or / ¼ 2p can become potentially an electric-field correction partner for a coarse patch on the other end. It
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is important to make sure that the correction does only once for each cell, and the B/ and the electric-field

components have the same values (up to the round-off error) at / ¼ 0 and / ¼ 2p.
We use three refinement levels for this example. The refinement ratio is 3 and 2, respectively. The base

grid is 60� 60. As suggested in [2], we output the solution at time t ¼ 0:295. Figs. 4(a)–(d) show the results

at time t ¼ 0 and t ¼ 0:295. For comparison, we have run this problem in Cartesian coordinates with a base

grid of 100� 100 and the same refinement levels and ratios. The density contours from these two runs are

shown in Figs. 5(a) and (b), respectively.
Fig. 4. (a) The initial refinement at t ¼ 0. (b) The initial r � B at t ¼ 0 for (a). At each x, values of r � B at different y are plotted. (c)

The refinement at t ¼ 0:295. The refinement ratios are 3 and 2, respectively. (d) Ther � B at t ¼ 0:295 for (c). At each x, values ofr � B
at different y are plotted.



(a) (b)

Fig. 5. (a) Density contour plots with three-level refinement for rotor problem. t ¼ 0:295. Thirty contour-lines between 0.532 and 10.83

are used. (b) Density contour plots with three-level refinement for rotor problem t ¼ 0:295. Thirty contour-lines between 0.532 and

10.83 are used. The results were obtained by Cartesian grid method with base grid 100� 100 and three-refinement levels.
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The second example is in the (r; z) coordinates. It was introduced in [17]. The problem is simulating a

light cylindrical MHD jet with a top-hat velocity profile propagating through a background medium. We

used a computation domain ðr; zÞ ¼ ½0; 1� � ½0; 2�. The base grid is 200� 200. The jet has a radius r ¼ 0:125
initially, which is about 25 base grid cells. The jet has an initial Mach number of 20, a gas density contrast

between the jet and ambient medium of qjet=qamb ¼ 0:1. The ambient medium has a sound speed of 1, and

an initial ambient magnetic field of B/ ¼ Br ¼ 0 and Bz ¼ Bamb ¼ 0:1. The jet carries a helical magnetic field

with Br ¼ 0; B/ ¼ 2Bambðr=rjetÞ and Bz ¼ Bamb.
Fig. 6. (a) The ‘‘zoomed’’ version of refinement and density contour plot for the jet problem on cylindrical ðr; zÞ plane. (b) The r � B
for (a). At each r, values of r � B at different z are plotted.
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We again used three levels of refinement with refinement ratios of 3 and 2. We ran our simulation until

t ¼ 0:1. Fig. 6(a) shows the density contour plot with refinement. Fig. 6(b) shows the results of r � B.

3.3. An example for spherical geometry

The last example is on simulating a rising buoyant bubble in an isothermal background gas, which is

initially in a pressure equilibrium under an external gravitational field. Its density (and pressure) profile is

described as q ¼ p ¼ expð�rÞ. A spherical bubble with a radius 0.5 is initially located at ð1:1; 0Þ. At t ¼ 0,
(a) (b)

Fig. 7. (a) The density contour plot with refinement for bubble problem with no magnetic field. (b) The density contour plot with

refinement for bubble problem with strong magnetic field b ¼ 0:4.

(a) (b)

Fig. 8. (a) The refinement at different times in an axis-symmetric spherical grid. (b) Ther � B for (a). Again, values at all cells and three

different times are plotted.
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the density inside the bubble is taken as q ¼ 0:1 expð�rÞ, so that the bubble will rise due to the pressure

imbalance. (Some details are further described in [14]).

The computational domain in (r; h) is ½0:2; 3:8� � ½0; p=3�. We first simulated this problem without any
external magnetic field, i.e., Br ¼ Bh ¼ B/ ¼ 0, and observed the Rayleigh–Taylor instability at the contact

interface (see Fig. 7(a)). We then used a uniform magnetic field along the zð¼ r cos hÞ direction. It is a

potential field with magnitude F ¼ �b � r cos h. The magnetic field is defined by

B ¼ �rF ¼ ðb cos h;�b sin hÞ;

where the constant b controls the magnitude of the magnetic field. We simulated this problem with b ¼ 0:4.
The Rayleigh–Taylor instability at the contact interface is suppressed by the strong magnetic field (see

Fig. 7(b)).

We used a base grid of 360�120 and a refinement ratio of 3. The refinements at different times are shown
in Fig. 8(a). The divergence of the magnetic field is shown in Fig. 8(b).
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